
Audit
Pancake Swap

Presented by:

OtterSec contact@osec.io

Robert Chen r@osec.io

Harrison Green hgarrereyn@osec.io

mailto:contact@osec.io
mailto:r@osec.io
mailto:hgarrereyn@osec.io

Contents
01 Executive Summary 2

Overview . 2
Key Findings . 2

02 Scope 3

03 Findings 4

04 Vulnerabilities 5
OS-PAN-ADV-00 [low] [resolved] | Faulty Token Struct Comparison 6

05 General Findings 7
OS-PAN-SUG-00 | Consolidate Token Metadata . 8
OS-PAN-SUG-01 [resolved] | Rename check_coin_store . 9
OS-PAN-SUG-02 | Use Arguments Instead of Global Changes . 10
OS-PAN-SUG-03 [resolved] | Remove Unnecessary Parameter 11
OS-PAN-SUG-04 [resolved] | Clarify Arguments in create_pair 12

Appendices

A Vulnerability Rating Scale 13

© 2022 Otter Audits LLC. All Rights Reserved. 1 / 13

01 | Executive Summary

Overview

Pancake Swap engaged OtterSec to perform an assessment of the pancake-swap program. This assess-
ment was conducted between October 10th and October 24th, 2022.

Critical vulnerabilities were communicated to the team prior to the delivery of the report to speed up
remediation. After delivering our audit report, we worked closely with the team to streamline patches and
confirm remediation. We delivered final confirmation of the patches November 4th, 2022.

Key Findings

Over the course of this audit engagement, we produced 6 findings total.

In particular, we identified an issue with the way token structs were being compared to generate pairs
(OS-PAN-ADV-00).

We also made recommendations around clean coding practices and general security recommendations.
These recommendations serve to clarify the purpose and logic of functions in the program and can help
prevent future security vulnerabilities stemming frommisunderstanding or needlessly entangled code.

Overall, the Pancake Swap teamwas responsive to feedback and great to work with.

© 2022 Otter Audits LLC. All Rights Reserved. 2 / 13

02 | Scope
The source code was delivered to us in a git repository at github.com/pancakeswap/aptos-contracts.

A brief description of the programs is as follows.

Name Description

pancake-swap Token swap program

© 2022 Otter Audits LLC. All Rights Reserved. 3 / 13

https://github.com/pancakeswap/aptos-contracts

03 | Findings
Overall, we report 6 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings don’t have an immediate impact but will
help mitigate future vulnerabilities.

Severity Count

Critical 0
High 0

Medium 0
Low 1

Informational 5

© 2022 Otter Audits LLC. All Rights Reserved. 4 / 13

04 | Vulnerabilities
Here we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-
bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

ID Severity Status Description

OS-PAN-ADV-00 Low Resolved Faulty token struct comparison

© 2022 Otter Audits LLC. All Rights Reserved. 5 / 13

Pancake Swap Audit 04 | Vulnerabilities

OS-PAN-ADV-00 [low] [resolved] | Faulty Token Struct Comparison

Description

In order to construct a deterministic ordering of two tokens in a swap pair, it is necessary to be able to
compare them. The current implementation concatenates the address, module, and struct names into a
vector and invokes compare_u8_vector.

This implementation generates collisions for certain token structs that should not collide. For example,
the following two structs would generate the same comparison string:

MOVE

module address::FO {
struct OBAR {}

}

module address::FOO {
struct BAR {}

}

Both structs generate the string: addressFOOBAR. The protocol will incorrectly reject this swap pair
from being constructed.

Remediation

Use type_info::type_name to generate a fully qualified name for each struct. In the example above,
the two token structs would produce the following names respectively:

1. address::FO::OBAR

2. address::FOO::BAR

Patch

Fixed in 0a0ead7.

© 2022 Otter Audits LLC. All Rights Reserved. 6 / 13

https://github.com/pancakeswap/aptos-contracts/commit/0a0ead7cddfd77d600d8e029dfe2c66c15905bbb

05 | General Findings
Here we present a discussion of general findings during our audit. While these findings do not present an
immediate security impact, they represent antipatterns and could lead to security issues in the future.

ID Description

OS-PAN-SUG-00 Consolidate TokenPairMetadata and TokenPairReserve

OS-PAN-SUG-01 Rename check_coin_store

OS-PAN-SUG-02 Use arguments instead of global changes.

OS-PAN-SUG-03 Remove the lp field in TokenPairMetadata

OS-PAN-SUG-04 Clarify arguments in create_pair

© 2022 Otter Audits LLC. All Rights Reserved. 7 / 13

Pancake Swap Audit 05 | General Findings

OS-PAN-SUG-00 | Consolidate Token Metadata

Description

Information for a token pair is stored in two separate metadata structs:

MOVE

/// Stores the metadata required for the token pairs
struct TokenPairMetadata<phantom X, phantom Y> has key {

/// The admin of the token pair
creator: address,
/// fee amount , record fee amount which is not withdrawed
fee_amount: coin::Coin<LPToken<X, Y>>,
/// It's reserve_x * reserve_y, as of immediately after the most

recent liquidity event↪→

k_last: u128,
/// T0 token balance
balance_x: coin::Coin<X>,
/// T1 token balance
balance_y: coin::Coin<Y>,
/// Mint capacity of LP Token
mint_cap: coin::MintCapability<LPToken<X, Y>>,
/// Burn capacity of LP Token
burn_cap: coin::BurnCapability<LPToken<X, Y>>,
/// Freeze capacity of LP Token
freeze_cap: coin::FreezeCapability<LPToken<X, Y>>,

}

/// Stores the reservation info required for the token pairs
struct TokenPairReserve<phantom X, phantom Y> has key {

reserve_x: u64,
reserve_y: u64,
block_timestamp_last: u64

}

Some information between the two structs is redundant. For example reserve_x is intended to repre-
sent the current value of balance_x and same for reserve_y. Tracking these fields in multiple places
presents the chance of accidentally de-syncing leading to a potential security issue.

Remediation

Use one struct to hold swap pair metadata and do not duplicate information across multiple fields. For
the case presented here, remove TokenPairReserve and use balance_x and balance_y directly
when it is necessary to check their values.

© 2022 Otter Audits LLC. All Rights Reserved. 8 / 13

Pancake Swap Audit 05 | General Findings

OS-PAN-SUG-01 [resolved] | Rename check_coin_store

Description

The functioncheck_coin_store creates a coin store for anaccount if it doesnot alreadyexist. However,
the current name implies it is a type of assertion. To prevent accidental misuse, consider renaming this
function.

Patch

Renamed to check_or_register_coin_store.

© 2022 Otter Audits LLC. All Rights Reserved. 9 / 13

Pancake Swap Audit 05 | General Findings

OS-PAN-SUG-02 | Use Arguments Instead of Global Changes

Description

In certain functions such as mint, information such as the amount to mint is obtained by observing
immediate changes in global state (caused by predecessor functions):

MOVE

fun mint<X, Y>(): (coin::Coin<LPToken<X, Y>>, u64) acquires
TokenPairReserve, TokenPairMetadata {↪→

let metadata = borrow_global_mut<TokenPairMetadata<X,
Y>>(RESOURCE_ACCOUNT);↪→

let (balance_x, balance_y) = (coin::value(&metadata.balance_x),
coin::value(&metadata.balance_y));↪→

let reserves = borrow_global_mut<TokenPairReserve<X,
Y>>(RESOURCE_ACCOUNT);↪→

let amount_x = (balance_x as u128) - (reserves.reserve_x as u128);
let amount_y = (balance_y as u128) - (reserves.reserve_y as u128);
...

}

This type of logic heavily depends on the sequence of function calls may lead to issues during refactoring.
If mint is called from other contexts, the global state may not be changed in the same way.

Remediation

Do not use changes in global state to pass information to subroutines. Instead pass these values directly
as arguments to the function.

© 2022 Otter Audits LLC. All Rights Reserved. 10 / 13

Pancake Swap Audit 05 | General Findings

OS-PAN-SUG-03 [resolved] | Remove Unnecessary Parameter

Description

TheTokenPairMetadata struct containsanunnecessarylp field. This field isusedduringremove_liquidity
as an intermediary but serves no purpose and can be removed:

MOVE

fun remove_liquidity_direct<X, Y>(
liquidity: coin::Coin<LPToken<X, Y>>,

): (coin::Coin<X>, coin::Coin<Y>, u64) acquires TokenPairMetadata,
TokenPairReserve {↪→

transfer_lp_coin_in<X, Y>(liquidity);

let (coins_x, coins_y, fee_amount) = burn<X, Y>();

(coins_x, coins_y, fee_amount)
}

Coins are transferred to TokenPairMetadata.lp in transfer_lp_coin_in and then immedi-
ately burned in the subsequent burn call.

Patch

Fixed in 3597098.

© 2022 Otter Audits LLC. All Rights Reserved. 11 / 13

https://github.com/pancakeswap/aptos-contracts/commit/3597098f2142f9f47d04495206a68614c6b5ae18

Pancake Swap Audit 05 | General Findings

OS-PAN-SUG-04 [resolved] | Clarify Arguments in create_pair

Description

The first argument in create_pair is called admin but it is not authenticated:

MOVE

public(friend) fun create_pair<X, Y>(
admin: &signer,

) acquires SwapInfo {
...

}

To prevent misuse, consider renaming this to something that indicates the correct level of privilege.

Patch

Fixed in 537997c.

© 2022 Otter Audits LLC. All Rights Reserved. 12 / 13

https://github.com/pancakeswap/aptos-contracts/commit/537997c6bfe627b3590dbf1eee1552658c61c5d0

A | Vulnerability Rating Scale
Weratedour findingsaccording to the following scale. Vulnerabilitieshave immediate security implications.
Informational findings can be found in the General Findings section.

Critical Vulnerabilities that immediately lead to loss of user fundswithminimal preconditions

Examples:

• Misconfigured authority or access control validation
• Improperly designed economic incentives leading to loss of funds

High Vulnerabilities that could lead to loss of user funds but are potentially difficult to
exploit.

Examples:

• Loss of funds requiring specific victim interactions
• Exploitation involving high capital requirement with respect to payout

Medium Vulnerabilities that could lead to denial of service scenarios or degraded usability.

Examples:

• Malicious input that causes computational limit exhaustion
• Forced exceptions in normal user flow

Low Lowprobability vulnerabilitieswhich could still be exploitable but require extenuating
circumstances or undue risk.

Examples:

• Oracle manipulation with large capital requirements andmultiple transactions

Informational Best practices tomitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants
• Improved input validation

© 2022 Otter Audits LLC. All Rights Reserved. 13 / 13

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	OS-PAN-ADV-00 [low] [resolved] | Faulty Token Struct Comparison

	General Findings
	OS-PAN-SUG-00 | Consolidate Token Metadata
	OS-PAN-SUG-01 [resolved] | Rename check_coin_store
	OS-PAN-SUG-02 | Use Arguments Instead of Global Changes
	OS-PAN-SUG-03 [resolved] | Remove Unnecessary Parameter
	OS-PAN-SUG-04 [resolved] | Clarify Arguments in create_pair

	Appendices
	Vulnerability Rating Scale

